ProzeBsimulation der Diffusion in dünnen polykristallinen Schichten

H. -D. Langer, A. Fröhlich

TU Karl-Marx-Stadt

Einfilhrang

Die Zusammenführung der Tantal-Technologie mit der SiliziumPlanartechnologie (STIC-Silicon Tantálum Integrated Circuits) erfordert die Weiterentwicklung der Beschichtungsverfahren und die genaue Kenntnis der zulässigen ProzeBtemperaturen. Fs wurden folgende Schichtsysteme untersucht (georidnet nach steigender ProzeBtemperatur):

- anodisches $\mathrm{Ta}_{2} \mathrm{O}_{5}$ auf $\mathrm{Ta} / \mathrm{Si}\left(85^{\circ} \mathrm{C}, 0,1 \%\right.$ ige $\left.\mathrm{H}_{3} \mathrm{PO}_{4} / 1 /, / 2 /\right)$
- gesputterte Ta-Schichten auf Si und $\mathrm{SiO}_{2} / \mathrm{Si}$
(Planarplasmatron ${ }^{1)}, \mathrm{Tu}_{\mathrm{Su}}-250^{\circ} \mathrm{C} / 3 /$)
- thermisches $\mathrm{Tr}_{2} \mathrm{O}_{5}$ auf Si und $\mathrm{Ta} / \mathrm{Si}$
($500^{\circ} \mathrm{C} / 4 /$)
- CVD-Ta-Schichten auf Si
$\left(700^{\circ} \mathrm{C}\right.$, Normaldruck /5/)
- CVD- $\mathrm{Ta}_{2} \mathrm{O}_{5}$-Schichten auf Si und $\mathrm{Ta} / \mathrm{Si}$
($900^{\circ} \ldots 1100^{\circ} \mathrm{C}$, Normaldruck /6/)

Ergebnis:

Bei der Abscheidung von Ta - bzw. $\mathrm{Ta}_{2} \mathrm{O}_{5}$-Schichten auf Si-Substraten kommt es zur Diffusionsreaktion Schicht/Substrat, die bei erhöhter Temperatur die gesamte Schicht erfaßt. Man stellt erhebliche Anderungen der Schichteigenschaften fest, insbesondere wurden eine drastische Abnahme der Isolations-
festickeit (s. Bild 1) und Zunahme des Brechungsindex von HI-CVD- $\mathrm{Ta}_{2} \mathrm{O}_{5}$ (im Vergleich z. B. zu anodischem $\mathrm{Ta}_{2} \mathrm{O}_{5}$) ermittelt. Danit ist die Eignung als Gate- bzw. Feldoxid, Kondensatordielektrikum, Kreuzungs- bzw. Abdeckisolator in Frage gestellt.
Der auffälligste Unterschied za üblicherweise eingesetzten amorphen SiO_{2} - bzw. $\mathrm{Ta}_{2} \mathrm{O}_{5}$-Schichten ist die_Polykniatallinitatt des $\mathrm{HT}-\mathrm{CVD}-\mathrm{Na}_{2} \mathrm{O}_{5}$ (s. Bild 2). Gesputterte Ts-Schichten sind ebenfalls polykristallin (Bild 3). Charakteristisch ist in beiden Fällen die Säulenstruktur des Gefüges.

Aus Auger-Untersuchungen folgt:

- deutliche Verbreiterung der Grenzschicht $\mathrm{Fa}_{2} \mathrm{O}_{5} / \mathrm{Si}$
- Anwesenheit des Si im gesamten $\mathrm{Ta}_{2} \mathrm{O}_{5}$-Querschnitt
- Si-Nachweis an der $\mathrm{Ta}_{2} \mathrm{O}_{5}$-Oberfläche.

Als repräsentatives Beispiel zeigt Bild 4 ein Auger-Tiefenprofil einer bei ca. $700^{\circ} \mathrm{C}$ auf eine Poly-Si-Schicht abgeschiedenen CVD-Tantalschicht. (Die auf Null absinkende Sauerstoffkonzentration markiert die Ta-Si-Grenzfläche.)

Schinifolgemung:

Obgleich eine Volumendiffusion des Si im $\mathrm{Ta}_{2} \mathrm{O}_{5}$ (bzw. im Ta) sehr wahrscheinlich ist, wird als Hanptursache für die beobachteten Phänomene eine Korngrenzendiffusion (KurzschluBdiffusion) des Si im poly- $\mathrm{Ta}_{2} \mathrm{O}_{5}$ (bzw. im poly-Ta) ongenomen.
Uw eine höhere Aussagekraft im Detail zu erlangen, wird die theoretische ProzeBanalyse herangezogen.
Dabei wird davon ausgegangen, daß die Simulation der Korngrenzendiffusion in Dünnschichtsystemen von prinzipiellem Interesse ist.

Man hat grundsätzliche Modelle zu unterscheiden, z. B.
a) Diffusion durch eine Schicht konstanter Dicke (Diffusionssystem mit fester Grenze, z. B. Tempern von Ta auf Si)
b) Diffusion mit bewegtem Schichtrand
(Diffusionssystem mit bewegter Grenze, 2. B. Aufwachsen von $\mathrm{Ta}_{2} \mathrm{O}_{5}$ auf Si).

BrozeBmodelle

Die Volumendiffusion in der Schicht wird gegenüber der Korngrenzendiffusion vernachlässigt. Es wird eine Oberflächensegregation (Ausbildung einer Oberflächenschicht durch Oberflächendiffusion) des Diffusanten zugelassen.
Das Schichtmodell wird dahingehend vereinfacht, daB Körner konstanter Abmessung mit senkrecht zur Substratebene bis zur Schi chtoberfläche durchgehenden Korngrenzen angenomen werden. Damit ergibt sich die in Bild 5 dargestellte schematische Schichtstruktur. Die gewählte Lage dea Koordinatensystems ist daraus ebenfalls zu ersehen. Aus Symmetriegründen hat das 2D-Simulationsmodell somit nur das durch $\left(1+w_{s}\right) \cdot\left(b+w_{b}\right)$ aufgespannte Gebiet zu beruicksichtigen. Dies erfordert eine Zusatzbedingung, wonach der Teilchenstrom in der Oberflächenschicht in der Mitte zwischen zwei benachbarten Korngrenzen zu verschwinden hat.
Es wird an dieser Stelle auf die mathematischen Ausdrucke verm zichtet. Sie berücksichtigen folgende Beziehungen und $\mathrm{Be}-$ dingungen:

- Korngrenzendiffusion im Bereich - $1<y<0$
- Oberflächendiffusion im Bereich $0<x<b$
- Anf;angsbedingung: verschwindende Diffusantenkonzentrationen in der Korngrenze und an der Oberfläche zum Zeitpunkt $t=0$
- Segregation des Diffusanten beim Ubergang Korngrenze/Oberfläche
- Quellenfreiheit des Teilchenstromes an diesem thergang (Punkt $\mathbf{x}=\mathbf{y}=0$)
- Diffusion aus konstanter Quelle (Segregationsbedingung Substrat/Korngrenzeneingang.)

Die beiden gewählten ProzeBmodelle unterscheiden sich quantitativ wie folgt:
a) Diffusionssystem mit fester Grenze. Es gilt 1 = konstant.
b) Diffusionssystem mit bewegter Grenze

Die Teilchenstromdichte (2. Ficksches Gesetz) ist durch den scheinbaren Teilchenstrom infolge der Bewegung des Koordinatensystems in y-Richtung zu erweitern. Ferner gilt bei gegebener Schichtwachstumsgeschwindigkeit v die Beziehung $I=v$. t, d. h., die Quelle entfernt sich vom Koordinatensprung mit der Geschwindigkeit -V.

Ohne auf den Rechenweg zur Lösung der partiellen Differentialgleichungen mit Anfangs- und Randbedingungen hier eingehen zu wollen, sei bemerkt, daB eine quantitative Auswertung u. a. von der Verfügbarkeit der konkreten Stoffparameter (z. B. Korngrenzendiffusions-, Oberflächendiffusions-, Segregationskoeffizient) abhängt.

Literatur

1/ V. Köhler
12/ B. Hannemann,
H.-D. Langer
U. Bröhl.
H.-D. Langer
/4/ H. Kremp
15/ E. Erben
/6/ E. Hänel.
(Jetzt E. Erben)
H. Cebulla.
H.-D. Langer

Dissertation A. TH Karl-Marx-Stadt (1985)
im vorliegenden Berichtaband

Vortr. "Ergebnisse des Einsatzes verschiedener Zerstäubungsverfahren von Tantal* Problemseminar Passive Bauelemente. TH Karl-Marx-Stadt (1985)

Diplomarbeit. TH Kerl-Marx-Stadt (1984) unveröffentlichte Ergebnisse

1m Berichtaband zur 3. Fachtagung Kondensatoren, Karl-Marx-Stadt (1985)
/7/ Präparation und Aufnahme: E. Erben. TH KarloMerx-Stadt
/8/ Präparation: Aufnahme :
U. Bröhl, TH Karl-Marx-Stadt ;
H. Podlesak, VEB Elektronische Bauelemente Teltow

Präparation:
Aufnahme:
E. Erben, TH Karl-Marx-Stadt;
H. Albrecht, VEB ZFTM Dresden

Bild 2: TEMmAufinahwe von oiner Hochtemperatur-CVDe $\mathrm{TB}_{2} \mathrm{O}_{5}$-Schiche $/ 7 /$

Bild 3: TEMmAufnahme (Beugungse und Hell feldaufnahme) ainer auf NaCl gesputterten Tamshicht /8/

Bild 4: Auger-Tiefenprofil einer bei ca. $700^{\circ} \mathrm{C}$ auf eine poly-Si-Schicht abgeschiedenen CVD-Ta-Schicht

a) Schichtgefüge (schematisch)

b) Schichtmodell und Koordinatensystem

