Das Titelbild zeigt anhand einer rasterelektronenmikroskopischen Aufnahme die Struktur einer porösen Ta-Oxidelektrode für Tantal-Elektrolytkondensatoren. Sie wird durch Sintern eines aus Ta-Pulver gepreßten Formkörpers und anschließende anodische Oxydation hergestellt.
REM-UNTERSUCHUNGEN AN PORÖSEN ANODEN FÜR TA-KONDENSATOREN

Dipl.-Ing. G. Zinke
VEB Forschungszentrum Elektronik Teltow

Dr. sc. nat. H.-D. Langer
Technische Hochschule Karl-Marx-Stadt

-Ing. O. Bittner, Ing. W. Gentsch
VEB Keramische Werke Hermsdorf

1. Einleitung

Zur Realisierung einer hohen spezifischen Kapazität von Elektrolytkondensatoren verwendet man im wesentlichen entweder geätzte Folien oder poröse Sinterkörper als Elektroden.

Es geht in diesem Beitrag um eine Charakterisierung von Tantalintersinterkörpern, die als Anodenelektrode in Ta-Festelektrolytkondensatoren eingesetzt werden, mit Hilfe des Rasterelektronenmikroskopes und metallografischer Untersuchungen. Dabei stehen technologische Aspekte im Vordergrund.

2. Prinzipielle Anforderungen an die poröse Elektrode

Jede Inhomogenität im porösen Metallgerüst bedeutet eine Einbuße an nutzbarer Kapazität pro Volumen. Obgleich im Sinne anderer elektrischer Eigenschaften damit nicht immer optimale Werte zu erzielen sind, gehen auch neuere Entwicklungen von der Homogenitätsforderung aus (gleichmäßige räumliche Eigenschaftsverteilung). Sie läßt sich in folgende wichtige Teilerfordernisse, die natürlich nicht voneinander unabhängig sind, aufspalten:

a) homogener Oberflächenzustand der inneren und äußeren Oberfläche,
b) homogene Porosität,
c) homogene spezifische Oberfläche,
d) homogene Porenabmessungen.

Trotz der teilweisen Gegenläufigkeit der Forderungen muß man einen technologisch vertretbaren Kompromiß finden.

Der Oberflächenzustand - bestimmt durch Realstruktur, Reinheitsgrad, Mikrorauhigkeit und chemische Natur - wirkt sich vor allem auf das Formierverhalten, bei dem es um die Ausbildung eines hinsichtlich seiner Elektronen- und Ionenstruktur wohl definierten Oxidielektrikums durch anodische Oxidation geht, und das Benetzungseigenschaften aus, das für ver-
schiedene Imprägnierprozesse im technologischen Ablauf grundlegende Bedeutung hat. Ein hoher Materialausnutzungsgrad (verfügbare spezifische Oberfläche pro Metallmasse) wird erreicht, wenn der Anteil der geschlossenen Porosität in der praktischen Elektrode vernachlässigbar klein ist gegenüber der offenen, da nur über die offenen Poren des vernetzten Porengefüges die entsprechende Festkörperoberfläche erreichbar ist.

3. Technologische Einflußfaktoren

In allen Stufen der technologischen Verarbeitung kommt es auf eine sorgfältige Parameterkontrolle mit möglichst automatischer Prozeßsteuerung an, um eine hohe Qualität der Produkte zu garantieren. Moderne Technologien bedienen sich zunehmend der Qualitätsbewertung anhand von Testmustern und der Qualitätssicherung durch Selektion.

Einige grundsätzliche Einflußfaktoren der wichtigsten Herstellungsstufen bis zur fertigen porösen Anode sind nachfolgend zu nennen.

3.1. Pulveraufbereitung

Man hat insbesondere folgende Faktoren zu beachten:

Pulverzustand:

geometrische Struktur, Kornfraktionen, Grad der Voragglomeration, Anteil agglomerierter/Kompekteteilchen; chemischer Zustand, adsorbierte Gase, Fremdschichten (u.a. abhängig von Lager- und Transportbedingungen); Fließverhalten, Neigung zum Zusammenballen, Schüttdichte

Preßhilfsmittel:
Teilchenart und -form bzw. chemischer Zustand (einschließlich Lösungsmittel und gelöstem Prähilfsmittel) bei festem bzw. flüssigem Ausgangszustand der Pulverbeimengung; spezifische Dichte

Prähilfsmittel-Gemisch:
Volumenanteile bzw. Konzentrationen der Gemischkomponenten, spezifische Gemischtüchtigkeit; Art der Prähilfsmittelzuführung, Bedingungen bei der Homogenisierung des Gemisches (Art, Dauer, Temperatur, Umgebungsatmosphäre, Behälterarmaturen, mechanische Belastung beim Homogenisieren); Lagerbedingungen nach dem Homogenisieren

3.2. Preßtechnologie

Wichtige Parameter sind:

Preßwerkzeug:

Werkzeugmaterial, Konstruktion (zyllindrische, prismatische, spezielle Geometrien, Kantenabrundung, Stempelballigkeit, Toleranzen), Oberflächenzustand (Aufrauung, Rieflichkeit, Reinheit, Art der Bearbeitung, Verschleißzustand), Preßrichtung, Handhabbarkeit

Preßmaschine:

Parametersteuerbarkeit, Druckregime, Arbeits- und Preßgeschwindigkeit, Ausstoßcharakteristik, Verschleißverhalten, Konstruktion (Toleranzen, Schwingungsstabilität, Zuführungprinzip für Pulver und Draht); Parameter der Präßaktivierung (Temperatur, Vibroaktivierung, Umgebungsatmosphäre)

Der Preßdruck erzeugt

a) Reibungsenergie der Teilchen untereinander,
b) Energie der Teilchendehformation,
c) Verlustenergie infolge Reibung des Pulverbettes an den Präßformwänden und am Anodendreht

Ein axial zugeführter Druck p_1 überträgt sich zu einem Anteil p_2 auf die senkrecht angeordneten Begrenzungen des Pulverbettes. Die Wandreibung bestimmt maßgeblich die Verdich-
tungskinetik und rückwirkend die Eigenschaften des Preßkörpers. Ohne Preßhilfsmittel werden 50 bis 90 % der Preßenergie durch Wandreibung aufgebracht. Der Zusatz kann diesen Anteil auf 30 bis 45 % reduzieren.

Bestimmend sind somit solche Größen wie

- der Reibungskoeffizient
- die Berührungsintensität (Kontaktfläche, Verhakung bzw. Verschweißung),
- Höhe der Pulverschüttung in der Preßform,
- Preßformabmessungen (z.B. Durchmesser D, Höhe H)
- Wanddruckkoeffizient k ($\frac{p_1}{p_\Pi}$).

In /1/ wird die quantitative Beziehung

$$p(z) = p_0 \exp \left(-\frac{4z}{D} \eta k \right)$$ \hspace{2cm} (1)

\(\eta\) - Wandreibungskoeffizient
\(p_0\) - Druck auf Stirnfläche

3.3. Sintertechnologie

Im Sinterprozeß sind die thermischen Reaktionen beim Preßhilfsmittel-Austrieb (250° bis 600° C) sowie in der Aufheiz- und Abkühlphase ebenso wichtig wie das Hauptsintern im Maximaltemperaturbereich (1600° C bis 2000° C).

Die zeitlichen Temperaturänderungen im porösen Körper müssen beim Aufheizen (t=60 min zum Erreichen der Maximaltemperatur) bzw. Abkühlen (120 min Vakuum und 120 min Schutzgas) der Reaktionskinetik angepaßt sein, um bei guter Vernetzung einen hohen Materialausnutzungsgrad bzw. von Rissen und Abbröckelungen freie Elektroden zu erhalten. Die lineare Schrumpfung beträgt bis 10 % und ist bei der Toleranzfestlegung exakt zu berücksichtigen.

Gegenläufige Optimalitätskriterien von entscheidender Bedeutung für die Bauelementefunktion und den Materialausnutzungsgrad sind:

- der Grad der Restverunreinigungen in der Elektrode nach dem Sintern (Verunreinigungen wie Kohlenstoff bei einem Anteil von wenigen ppm bestimmen bereits maßgeblich den Reststrom und die Isolationsfestigkeit, die bei Ta-Festelektrolytkondensatoren das entscheidende Zuverlässigkeitskriterium ist.), geringe Restverunreinigungen verlangen beim Sintern hohe Temperaturen, lange Sinterzeiten und geringe Drücke,
die Minimierung des Verlustes an spezifischer offener Oberfläche im Sinterkörper im Vergleich zum Pulver (Dere Oberflächenverlust bewegt sich immerhin im Bereich von 50 bis 75%). Hohe Ausnutzungsgrade der Pulver verlangen niedere Sintertemperaturen und geringe Sinterzeiten. Zu den wichtigsten Einflußfaktoren zählen:

Aktivität, chemischer Zustand und metallischer Vernetzungsgrad des Metallgerüstes im Vorsinterzustand; Deckschicht- und Gasehalt, Rückstände des Freihilfsmittels im Vorsinterkörper; thermisches Ausdehnungsverhalten und spezifische Dichte des Vorsinterkörpers; Sinterbedingungen (Aufheiz- und Abkühlgeschwindigkeit, Sintertemperaturzeit, Ofenatmosphäre, und deren Strömungsverhältnisse, Restgas bzw. Schutzgaspartialdruck); Sinteranlage (Parametersteuerung, Automatisierungsgrad, Beschickungskapazität, Chargen stapelung, Heizprinzip, Konstruktionsmaterialien und Verunreinigungsrücktransport, Reinigungsmöglichkeiten, Kühlprinzip).

4. Experimentelle Untersuchungen

4.1. Sinterkinetik praktischer Ta-Sinterkörper

Die Zeit zur Einstellung eines bestimmten "Sintergrades" hängt bei gegebenem Sintermechanismus von den Teilchenabmessungen ab. Für kugelige Teilchen kann der Sintergrad quantitativ durch das Verhältnis \(\frac{t_2}{R_2} \) angegeben werden (\(x \)-Sinterhalsradius; \(R \)-Teilchenradius). /2/

Der Zusammenhang zwischen den Zeiten \(t_1 \) und \(t_2 \), die für die Einstellung eines gleichen Sintergrades von Päaren kugeliger Teilchen erforderlich sind, wird in /3/ betrachtet. Die Radien unterscheiden sich voneinander um das \(k \)-fache:

\[
R_2 = k R_1 \quad \text{(entsprechend } x_2 = k x_1)\]

Herring stellte das "Gesetz der Abmessungen" in seiner allgemeinen Form auf:

\[
t_2 = k^\gamma t_1
\]

Dieses Gesetz stimmt mit der Abhängigkeit \(x = f(t) \) überein. \(\gamma \) hängt vom Materialtransportmechanismus ab:

\[
\gamma = 1 \quad \text{viskoses Fließen} \\
\gamma = 3 \quad \text{Volumendiffusion}
\]

Das Gesetz wurde für isotrope kristalline Körper erhalten. Es muß als idealisierte Näherung betrachtet werden. Dabei wird vorausgesetzt, daß die Kinetik des Sinterprozesses nur durch einen der Massentransportmechanismen bestimmt wird. Im Realfall sind zwei oder mehr Mechanismen bestimmend und die
Konstante verliert ihren klaren physikalischen Sinn. Die Einschränkungen wirken sich bei den durchgeführten Untersuchungen aus. Ausgewählte prismatische Sinterkörper wurden gebrochen. Mittels Rasterelektronenmikroskop wurden annähernd kugelförmige Teilchen, die über den Sinterhals zusammengewachsen sind (Hantelbild), im gebrochenen Sinterkörper aufgesucht und ausgemessen (Bild 2). Die Sintertemperaturen betrugen 1600 bis 2018°C und die Sinterzeiten 5 bis 30 min. 3 Ta-Pulversorten der spezifischen Ladung 2800 bis 8000 μCg⁻¹ kamen dabei zum Einsatz. Es zeigte sich, daß der Sinterhalsradius x mit zunehmender Temperatur und Zeit wächst (von x = 0,6/μm bis x = 1,6/μm).

Auch das Verhältnis Sinterhalsradius x zu Teilchenradius R nimmt mit Temperatur- und Zeiterhöhung zu (von x/R = 0,33 bis x/R = 0,6).

4.2. Äußere Sinterkörperstruktur - Oberflächenporosität

Wenn bei den unterschiedlichen Pulvern gleiche Gewichte zum Einsatz kommen, ergeben sich zwangsläufig teilweise keine brauchbaren Anoden, was auch auf die für die Praxis unzureichenden Oberflächen beim Pressen Auswirkung hat.

Bei der Betrachtung der Sinterkörperoberfläche fällt augenscheinlich auf, daß glatte - weniger poröse - glänzende (Bild 3) sowie rauhe - poröse - matte (Bild 4) Bereiche vorhanden sind (Bild 5).

Durch Preßformreibung sowie Übersinterung kann die Porosität in Bereichen der äußeren Sinterkörperoberfläche stark herangesetzt werden. Dadurch ist die gleichmäßige Benetzung des Porenraumes mit Flüssigkeiten gefährdet.

Die durch zu starken Preßformabrieb stark deformierten, außen "geglätteten" Teilchen sind eine wesentliche Ursache für Isolationsdefekte. Auf dieses Phänomen soll Bild 6 aufmerksam machen, das die hohe Dichte von durch kristallines Ta₂O₅ markierten (vgl. /4/) Isolationsdefekten im Bereich der äußeren Oberfläche einer Ta-Oxidelektrode zeigt.
An den o.g. Sinterkörpern wurden von den Bereichen unterschiedlicher Oberflächenporosität REM-Aufnahmen hergestellt. Die Oberflächenporosität \(\varepsilon_0 \) wurde an einem Sinterkörper bestimmt (Auswertung am Foto):

- rauher Bereich: \(\varepsilon_0 = 25\% \)
- glatter Bereich: \(\varepsilon_0 = 6\% \)

4.3. Innere Sinterkörperstruktur - Isolinienbild der inneren Porosität

In /4/ wird über die räumliche Inhomogenität der Gesamt- porosität \(\varepsilon \) eines Sinterkörpers berichtet. Bild 7 zeigt die Isolinienendarstellung der Gesamtporosität. Sie wurde am metallographischen Schliff eines zylindrischen Sinterkörpers (H = 12 mm, D = 7 mm; Preßdichte: 8,7 g cm\(^{-3}\); Sinterbedingungen: \(T = 1950^\circ\text{C}, \; t = 30 \text{ min} \)) in der Axialebene ermittelt.

4.4. Schlußfolgerungen

5. Literatur

/1/ Eljutin, V. P.; Kustikov, V. I.; Lisov, B. S.; Maurach, M. A.; Mitin, B. S.; Moszuchin, E. I.: Hochtemperaturmaterialien, Metallurgia, Moskau (1973)

Bild 1:
Skizze zu Glg. 1

Bild 2:
verseinterte Ta-Teilchen

Bild 3:
glatter Bereich auf der Sinterkörperoberfläche
Bild 4:
rauher Bereich auf der Sinterkörperoberfläche

Bild 5:
Lage der Bereiche unterschiedlicher Oberflächenporosität

poröser Bereich
weniger poröser Bereich
Bild 6: markierte Isolationsdefekte im Bereich der äußeren Oberfläche einer Ta-Oxidelektrode

Bild 7: Porositäts-Isoliniendarstellung